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Abstract. We assess the accuracy of global gridded terrestrial water stor-

age (TWS) estimates derived from temporal gravity field variations observed

by the GRACE satellites. The TWS data set has been corrected for signal

modification due to filtering and truncation. Simulations of terrestrial wa-

ter storage variations from land-hydrology models are used to infer relation-

ships between regional time series representing different spatial scales. These

relationships, which are independent of the actual GRACE data, are used

to extrapolate the GRACE TWS estimates from their effective spatial res-

olution (length scales of a few hundred km) to finer spatial scales (approx-

imately 100 km). Gridded, scaled data like these enable users who lack ex-

pertise in processing and filtering the standard GRACE spherical harmonic

geopotential coefficients to estimate time series of TWS over arbitrarily shaped

regions. In addition, we provide gridded fields of leakage and GRACE mea-

surement errors that allow users to rigorously estimate the associated regional

TWS uncertainties. These fields are available for download from the GRACE

project website (http://grace.jpl.nasa.gov).

Three scaling relationships are examined: 1) a single gain factor based on

regionally averaged time series, 2) spatially distributed (i.e. gridded) gain

factors based on time series at each grid point, and 3) gridded gain factors

estimated as a function of temporal frequency. While regional gain factors

(1) have typically been used in previously published studies, we find that com-

parable accuracies can be obtained from scaled time series based on gridded

gain factors (2). In regions where different temporal modes of TWS variabil-
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ity have significantly different spatial scales, gain factors based on the first

two methods may reduce the accuracy of the scaled time series. In these cases,

gain factors estimated separately as a function of frequency may be neces-

sary to achieve accurate results.
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1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) observes temporal variations

of Earth’s gravitational potential. After atmospheric and oceanic effects are accounted for,

the remaining signal on monthly to interannual time scales is mostly related to variations

of terrestrial water storage (TWS). Estimates of water storage variations suffer from signal

degradation due to measurement errors and noise, which are manifested as both random

errors that increase as a function of spherical harmonic spectral degree [Wahr et al., 2006],

and systematic errors that are correlated within a particular spectral order [Swenson and

Wahr , 2006]. Several filtering approaches currently exist to either damp or isolate and

remove these errors. In practice, however, filters also modify the true geophysical signal

of interest. Filter design focuses on this trade-off, and attempts to minimize signal loss

while maximizing noise reduction [Swenson and Wahr , 2011].

Because the spatial resolution of filtered GRACE data is typically more coarse than

that of other hydrological data sets, it is necessary to reconcile differences in spatial scale

between data sets before an equitable analysis can be performed. When the signal modifi-

cation resulting from filtering the GRACE data is not accounted for, apparent differences

between the TWS estimates will erroneously be attributed to either shortcomings in the

observations or model data, when these differences are in fact due to a mismatch in spatial

scales [Tang et al., 2010].

A straightforward way to reconcile spatial resolution discrepancies is to filter each data

set in the same way. This approach has been used previously when validating satellite-

based estimates of winter precipitation [Swenson, 2010] and global land-hydrology models
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[e.g., Schmidt et al., 2006]. An alternate approach is to scale the GRACE data to account

for the effect of the filter on the signal. A number of studies [e.g., Swenson and Wahr ,

2007; Rodell et al., 2004; Klees et al., 2007; Landerer et al., 2010] have estimated the

signal attenuation in basin-averaged time series and applied a gain factor to the GRACE

observations. If not restored, signal attenuation will reduce the ability to close the re-

gional water balance, or when the water budget is used to estimate one component as

a residual, signal attenuation becomes an error in the residual. As it is cumbersome for

users of GRACE data to estimate the signal degradation via the described route, hydro-

logical research would greatly benefit from gridded GRACE data that can be used as an

independent, stand-alone and unambiguous data set for hydrology applications without

a geodesist’s assistance [Rodell et al., 2010]. This would allow users to average gridded

GRACE data over user-defined regions, where the signal attenuation has already been

corrected for as part of the GRACE post-processing, and the errors and uncertainties of

a regional average can also be computed from gridded data.

In this paper, we describe the scaling technique used to restore some of the signal

loss in regionally averaged time series due to filtering and truncation of GRACE TWS

observations, and apply it to regions consisting of 1 by 1 degree grid cells. The result-

ing data set is publicly available via the Jet Propulsion Laboratory’s TELLUS website

(http://grace.jpl.nasa.gov). We then compare the accuracy of regional time series scaled

using a bulk gain factor to a regional time series computed using the gridded data set

to which distributed gain factors have been applied. Next, we compare the effectiveness

of single gain factors relative to frequency-dependent gain factors for a scenario where

seasonally varying TWS signals have significantly different spatial patterns then secularly

D R A F T March 12, 2012, 10:39am D R A F T



X - 6 LANDERER & SWENSON: ACCURACY OF GRACE TWS

varying TWS signals. We then discuss the limitations of this scaling approach, which

should help users of gridded GRACE TWS data to realize the full potential of this data

set while being aware of the uncertainties. The goal of this approach is to simplify the use

of GRACE TWS observations for hydrological applications, and to allow for a rigorous

quantification of leakage and measurement errors.

2. A Gridded GRACE Dataset

The standard products of the GRACE Project are sets of spherical harmonic coeffi-

cients describing the monthly variations in Earth’s gravity field, which can be inverted

to estimate changes in mass at the surface [Wahr et al., 1998]. After filtering to reduce

the presence of measurement errors, the data can be gridded, i.e. converted from spectral

coordinates to geographical coordinates, in order to create maps of surface mass variations.

The GRACE filter used in this study consists of two parts. The first filter is designed to

remove systematic errors that are characterized by correlations between certain spherical

harmonic coefficients; these errors are manifested as North-South oriented ’stripes’ in

maps of GRACE TWS [Swenson and Wahr , 2006, Fig. 1]. The second filter is a Gaussian

averaging filter with a half-width of 300 km that reduces random errors in higher degree

spherical harmonic coefficients not removed by “de-striping” [Wahr et al., 1998, 2006].

The Gaussian filter is a smoothing operation and reduces the spatial resolution of GRACE

observations by damping the higher degree coefficients.

Another feature of GRACE data is that the gravity field solutions are typically truncated

at a spectral degree lmax ≤ 60. Thus, signals having spatial variability with spatial scales

finer than a few hundred km are not resolved by GRACE (e.g., lmax = 60 represents
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a wavelength of approximately 330 km). This form of signal loss can be thought of as

resulting from the application of a spectral low-pass filter.

The errors in the filtered data are estimated following the method described in Wahr

et al. [2006]. The top panel of Fig. 1 shows the root-mean-square variability in the filtered

GRACE TWS data, gridded at 1 degree spatial resolution. The bottom panel shows our

estimate of the RMS measurement error, which exhibits a zonally banded pattern, with

maximum errors of about 36 mm water-equivalent height at lower latitudes; pole-ward,

the error decreases to less than 15 mm.

3. Signal Attenuation from Filtering

All water storage observations from GRACE represent average values, in both space and

time. Temporally, GRACE data are approximately monthly averaged quantities. Due to

truncation and filtering in the spectral domain, GRACE data are also spatially averaged,

with spatially varying weights. This results in a time series that differs from the true,

i.e. uniformly weighted, time series; this difference is often referred to as “leakage”. The

leakage error depends on the filtering process, as well as the characteristics of the signal.

The effects of the successive filter operations on the GRACE observations are shown

in Fig. 2. In the top left panel, the RMS variation of the original GRACE data are

shown. Large amplitudes and prominent stripe-like features can be observed. After

filtering (Fig. 2, bottom left panel; note different scale), the presence of these features

is largely absent, indicating the effectiveness of the filtering process in reducing errors.

However, the filters’ effects on the actual signal cannot be ascertained from GRACE data

alone. Instead, simulations based on realistic TWS models can be used [Swenson et al.,

2003; Seo and Wilson, 2005].
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To obtain quantitative estimates of signal attenuation and leakage error that arise

from the application of these GRACE post-processing filters, we use synthetic monthly

TWS anomalies form Jan-2003 to Dec-2009 simulated by the NOAH land model, run-

ning within the Global Land-Data Assimilation System (GLDAS-NOAH, [Rodell et al.,

2004]). GLDAS-NOAH does not explicitly simulate groundwater and surface water, and

we exclude TWS variations of glaciers and ice sheets, as these are either not included or

unrealistic due to missing model physics. Methods to correct for signal attenuation for

Greenland and Antarctica can be found in, e.g., Velicogna [2009] and Chen et al. [2009].

In order to create a synthetic TWS data set, the model data are first converted to spheri-

cal harmonic coefficients, and the two-step GRACE filter is applied. Next, the coefficients

are re-mapped to the original 1×1 latitude/longitude grid [Wahr et al., 1998] to quantify

the signal attenuation.

The original GLDAS-NOAH model data (Fig. 2, top right panel) at 1 × 1 degree

resolution is taken as the reference, relative to which the filtering effects are evaluated.

When applying GRACE filters to the model data (Fig. 2, bottom right panel), an implicit

filtering step consists of truncating the model data at a spectral degree and order of 60

(or less), since most GRACE observations are only provided at that resolution. This

truncation alone effectively reduces the spatial resolution from ∼110 km to ∼330 km at

the Equator. Geophysical signals with a prominent North-South orientation are further

attenuated by the de-striping filter, and smoothing the truncated, de-striped data with a

Gaussian averaging radius of 300 km also reduces signal variance. Signals along coastlines

are particularly prone to signal attenuation because the filtering process removes short

wavelength features. Therefore, grid points close to the ocean represent averages that
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include the typically much smaller ocean signals, resulting in strong reductions of TWS

signal amplitude (e.g., along the US West-Coast). Only very few regions exist where the

ocean signals are large enough to potentially leak onto land and interfere with terrestrial

water storage signals (e.g., Gulf of Carpentaria North of Australia). Since an ocean

model is removed in the GRACE processing, ocean-to-land leakage effects are already

significantly reduced.

4. Restoring Signal Attenuation

4.1. Basin-Scale Gain Factors

We quantify leakage error with the root-mean-square difference (RMSD) between the

unfiltered and the filtered monthly mean GLDAS-NOAH water storage estimates. In order

to reduce this leakage error, we derive a gain factor k by minimizing the misfit between

the unfiltered, true (∆ST ) and filtered (∆SF ) storage time series through a simple least-

squares regression:

M =
∑

(∆ST − k∆SF )
2, (1)

where the summation is over the 84 months of GLDAS-NOAH data used here. Several

studies have used this approach to restore TWS signals over hydrological drainage basins

[e.g., Famiglietti et al., 2011; Swenson and Wahr , 2007; Klees et al., 2007; Chen et al.,

2007].

As an illustrative example, we use Eq. 1 to derive the gain factor for the basin-mean

monthly TWS in the Columbia River basin in the North-West US (Fig. 3). Applying the

GRACE filters to GLDAS-NOAH leads to a significant leakage error. A gain factor of 1.44,

calculated from Eq. 1, reduces the variance of the leakage error by nearly 85%. When the
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gain factor as determined from GLDAS-NOAH is applied to actual GRACE observations,

it becomes evident that GLDAS-NOAH underestimates seasonal TWS variations in the

Columbia River basin (Fig. 3c), likely due to missing groundwater and river storage

components in the present GLDAS-NOAH version (M. Rodell, personal communication).

This example also underscores one important aspect of the scaling approach: it does

not seek to match GRACE measurements to synthetic model amplitudes, but uses the

synthetic model patterns to determine relative signal attenuation based on the ratio of

true and filtered signal amplitudes.

Table 1 summarizes the filter parameter-dependent basin-scale gain factors (kb, second

column) for river basins of various drainage areas and locations. Gain factors for basins

having large areas are typically close to 1, while smaller basins have larger gain factors.

The third column of table 1 lists the initial leakage error (El
b), while the fourth column

shows the residual leakage error (El
b,kb

) present after the gain factor is applied to the

filtered time series. Comparing El
b and El

b,kb
shows that significant reductions in leakage

error variance can be obtained after the application of the gain factor.

4.2. Grid-point Gain Factors

Previous studies [e.g., Famiglietti et al., 2011; Swenson and Wahr , 2007; Klees et al.,

2007; Chen et al., 2007] have used a scaling approach, computing gain factors for specific

regions. To create a global, gridded data set of GRACE TWS observations that can be

averaged over arbitrary regions, we apply the scaling procedure to all land points on a

1×1 degree grid. This results in map of gain factors kg (Fig. 4), that, when applied to the

filtered data, restores a significant portion of the signal attenuation. As discussed in more

detail below, applying the gain factors first and then averaging leads to regional averages
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that are comparable to applying a single gain factor to an unscaled regional average (see

also Fig. 3 for the Columbia River as an example).

The gridded gain factors shown in Fig. 4 are generally close to 1, indicating that signal

damping is weak over the majority of interior land points. Along coastlines, gain factors

significantly larger than 1 are required due to signal interference with the much weaker

ocean signal. Areas of low TWS variability (e.g., Northern Africa) are susceptible to

leakage errors from larger signals of surrounding regions. In these locations, gain factors

less than 1 are then needed to reduce the signal amplification. As filtering may not only

change the amplitude, but also change the shape of the signal through interference with

out-of-phase signals from surrounding regions, it is instructive to examine the grid-point

correlation between the filtered and unfiltered model data (Fig. 5). Correlation values

close to 1 indicate that the shape (mostly dominated by seasonal variations) is not strongly

affected by the filter, whereas lower correlation values indicate that the spatial averaging

caused by the GRACE filter has changed the shape of the signal. This typically occurs

where strong gradients in the phase of the TWS signal exist, such as transitions between

mountains and plains. In those areas, the spatial decorrelation length is often much

shorter than what GRACE can resolve, and therefore signal leakage and interference are

strong. The linear scaling approach (Eq. 1) is less effective at restoring the signals in

those cases.

4.3. Gridded Uncertainty Estimates

A previously estimated GRACE measurement error [Wahr et al., 2006] did not account

for the leakage error from the TWS signals. Fig. 6 shows new estimates of the GRACE

measurement error (top) and leakage (middle) error for the gridded GRACE TWS data
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set. The measurement errors are the result of multiplying the filtered GRACE measure-

ment error map (Fig. 1) by the grid-point gain factor map (Fig. 4).

At each grid-point, the leakage error estimate has been multiplied by the ratio of the

RMS-variabilities of the filtered GRACE and GLDAS-NOAH time series:

El
g = RMS(∆ST − k∆SF )

RMSGRACE

RMSmodel

, (2)

with ST and k∆SF as defined in Eq. 1. The reason for this is that in some cases there is a

significant discrepancy between the amplitudes of the GRACE and modeled TWS signals.

The total error at each grid point is then obtained by summing leakage and measurement

errors in quadrature.

Globally, the application of the gain factors considerably reduces leakage errors. Fig. 7

shows a histogram of the leakage error for the gridded TWS estimates before (blue line)

and after (black line) scaling. The total area of grid-points having leakage errors greater

than about 5 cm is significantly reduced, leading to a more sharply peaked histogram

with more areas having leakage errors in the 2 to 3 cm range. In particular, signals along

coastal areas are much better recovered.

The error components shown in Fig. 6 reflect the expected uncertainty in the time

series of each individual grid-point. However, the errors in the gridded data are spatially

correlated, so the actual error in a regional average time series cannot be obtained by

simply averaging the variances from all points within a given region. To obtain a more

accurate uncertainty estimate, we introduce an approximation for the error co-variance

that is a function of the distance between grid-points. A Gaussian window is used, whose

half-width is specified by a parameter d0 representing the distance at which the function

has decreased to half its maximum value. The co-variance between two points xi and xj
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is then given by

Cov(xi, xj) = σi σj exp(
−d2ij
2d20

), (3)

where σi and σj are the standard deviations of the uncertainty estimates for grid points

i and j, exp(...) is the correlation, dij is the distance between between grid points, and

d0 is a de-correlation length-scale. The error variance of a regional mean TWS estimate

then becomes

var =
N∑
i=1

N∑
j=1

wi wj Cov(xi, xj), (4)

where wi is the area weight at each grid point in the basin. The values of d0 were

chosen so that the error budget obtained using the gridded data set matched the budget

obtained when computing the regional average TWS time series directly; the area weights

wi simplify to 1/(number of grid points) if one assumes equal contribution from each pixel

to the basin mean TWS. For the present choice of filter parameters, we used dm0 = 300km

for the measurement errors, and dl0 = 100km for the leakage errors. We determined these

values by comparing the error budgets based on basin- and gridpoint-scaled time series

for a large number of river basins.

Column 5 in Table 1 shows the residual leakage error (El
g) when basin-averaged time

series are computed using the gridded gain factors, applied to the GRACE TWS data

set. Using these grid-point gain factors kg, most basin averages have a similar reduction

in RMSD relative to the unscaled estimates as the basin-scale gain factors (column 4),

typically agreeing to within 20 % or less. This level of agreement can also be seen in

the basin-scale (column 6) and gridpoint (column 7) measurement error estimates. Total

error estimates, obtained by summing measurement and leakage errors in quadrature, are
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shown in columns 8 and 9. Time series for large river basins have RMS-uncertainties that

are generally less than 2 cm, while smaller basins have RMS uncertainties around 3 to 4

cm.

An additional amount of uncertainty may arise from uncertainties of the model-based

gain factors themselves. The gain factors shown in Fig. 4 are based on GLDAS-NOAH.

We evaluated the accuracy of the gain factors by deriving gain factors for the Community

Land Model (CLM4) hydrology model [Oleson et al., 2008], and applied the CLM4-based

gain factors to the filtered GLDAS-NOAH data. The heterogeneous amplitude recon-

structions (e.g., GLDAS-NOAH with CLM4 derived gain factors), yield residual leakage

errors that are similar to the homogeneous amplitude reconstruction (e.g., GLDAS-NOAH

with GLDAS-NOAH derived gain factors) when averaged over the basins in Tab. 1. The

differences in the residual leakage errors for different gridded gain factors are similar to

the error differences between basin-scaled and grid-point scaled basin averages. Out of

the 46 basins in Tab. 1, the residual leakage error for 24 basins agrees to within 10%, and

40 basins have residual leakage errors that agree to within 25%. For very small basins

that cover only a few grid points (e.g., in our sample the Cunene), the residual leakage

errors may increase by up to 70%.

As a general rule for the application of gain factors, it must be kept in mind that the

estimates of TWS towards the smallest spatial scales can potentially be biased towards

the hydrology model on which the gain factors are based upon. Although a user may use

the time series of a single pixel (with its possibly large uncertainty), the motivation for the

distributed gain factor data is to allow the user to create time series for arbitrarily-shaped

regions. As the size of the averaging region increases, the errors generally decrease.
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4.4. Modes of temporal TWS variability with different spatial scales

The approach in Eq. 1 to estimate gain factors by minimizing the misfit of the entire

time series with a single gain factor lumps together month-to-month variability, seasonal

signals, and long-term trends. This issue of different temporal scales concerns both the

grid-point and the basin-scaling techniques. When the TWS signal contains different

modes of temporal variability that have different spatial patterns, a single gain factor may

not yield accurate results. Chen et al. [2007] found slightly different attenuation effects

for annual and semi-annual components for several large river basins, but the differences

were relatively minor for small smoothing radii as used here (300 km). Moreover, the

semi-annual TWS amplitudes are generally much smaller than the annual amplitudes

(in GLDAS-NOAH and in GRACE), so that the impact of scaling the two components

separately was further reduced. Over river basins larger than about 0.6 Mkm2, we find

that gain factors for a mean monthly climatology and fitted semi-annual and annual terms

agree mostly to within a few percent (not shown), indicating that a single gain factor is

applicable for seasonal variations with the present choice of filter parameters. In addition,

we tested the performance of a gain factor based on a mean seasonal signal only (multi-

year monthly means in the simulated TWS fields), and find that the error reduction is very

similar to the case where the gridded gain factor is based on all monthly TWS anomalies

over the 7 years of model data (Fig. 7).

As the GRACE satellites now provide observations of about 9 years of monthly TWS,

interannual variations and trends can be resolved. It is therefore important to assess if

the scaling described above is applicable beyond the seasonal timescale. The simulated

long-term signals over some regions agree well between GRACE and GLDAS-NOAH (e.g.,
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US South-East, La Plata), but this is not the case for many other regions (e.g., North-

West India, Amazon). Hydrological models often do not capture the full range of inter-

annual TWS variations due to missing processes and storage parameterisations, such as

groundwater storage or water extraction for irrigation. This has been exploited to extract

these unmodeled signals by disaggregating the GRACE observations into water storage

components. However, unmodeled TWS signals limit the use of synthetic data to infer a

global map of gain-factors that can be applied to actual GRACE observations.

To illustrate this point, we use an example based on Rodell et al. [2009], who found sig-

nificantly different gain factors for the seasonal and secular components of the observed

TWS signal in North-West India (Fig. 8a). The seasonal signal (TWSs) was well cor-

related over a broad region beyond the averaging region, and therefore not significantly

attenuated. In contrast, the interannual component was assumed to be originating from

the relatively small averaging region only (based on prior knowledge about the spatial ex-

tent of the Indus aquifer), and therefore was significantly attenuated in amplitude. In such

a case, the leakage error for the long-period signal (TWSlp) must be treated separately

from the seasonal variations (TWSs) by deriving and applying multiple gain factors:

TWS = ksTWSs + klpTWS lp. (5)

If the spatial extent of the interannual signal TWSlp is known, and if it is only present in

GRACE but not in a hydrology model, the gain factor klp can be estimated by a simple

binary distribution of ones over the a priori assumed region, and zeros outside of that

region [Rodell et al., 2009]. For the NW-India aquifer and the present choice of filtering

parameters, the basin-scale seasonal gain factor is then about 1, whereas the longer period

signal requires a gain factor of klp=3.2.
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Had the spatially confined trend signal TWSlp actually been present in GLDAS-NOAH,

the reconstruction of the true signal would have revealed that the decomposition of the

combined TWS signal into seasonal and long-period anomalies is necessary in order to

estimate ks and klp from the synthetic data. Without this temporal decomposition, the

average gain factor is about 1.7, which would overestimate the seasonal variations, but

underestimate the trend (Fig 8b). Only with Eq. 5 can the true signal be accurately

reconstructed. Our tests show that this works equally well for the basin-average and grid-

point scaling approach (Fig 8c). The observed TWS changes over the NW-Indus aquifer

are rather extreme in amplitude, but this case demonstrates that gain factors based on

simulated TWS change patterns in some cases may not be used to infer long-period TWS

changes of actual GRACE observations; a case-by-case analysis may still be necessary, in

particular for smaller regions, such as aquifers or surface reservoirs.

5. Summary and Discussion

GRACE data processing seeks a balance between accuracy and spatial resolution. The

level of noise can be reduced by filtering the data, and a variety of different filters have

been developed for this purpose, each modifying the data in a specific and characteristic

way. However, along with the error reduction comes some loss of signal. In many cases,

measurement noise is substantially reduced leaving signal loss as the dominant term in the

error budget of the filtered data. This type of error (leakage) can be estimated by applying

the filter to a model, and comparing the original and filtered model fields. In this paper,

we have described one way of using the information supplied by such an experiment,

i.e. a multiplicative gain factor that reduces the differences between the original and

filtered model time series in a least squares sense. It allows users of gridded GRACE
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TWS observations to average over arbitrary regions of their choice and compare it to

other gridded data (e.g., a hydrology model or ground water data set), without having to

apply the GRACE filtering process to that data in the spherical-harmonic domain. As

detailed above, small spatial scales come at the expense of larger errors, in particular from

leakage. Therefore, increasing the size of an averaging region generally reduces errors and

uncertainties considerably.

The gain factors derived here are based on simulated TWS variations, and are inde-

pendent of the actual GRACE observations. Their purpose is to extrapolate the GRACE

data to finer spatial scales that are not well resolved by the current GRACE satellites.

It is important to keep in mind that while these fine scales are not truly measured by

GRACE, our gridded TWS estimates represent these scales to the degree to which a scal-

ing relationship can recover them. This scaling relationship also enables us to quantify

leakage and measurement errors based on signal patterns of TWS. The magnitude of the

simulated TWS variations is not crucial to the calculation of the gain factors because they

aim at restoring relative amplitudes. Thus, the spatial patterns of TWS, which are in part

controlled by the large-scale climate patterns of the forcing data (e.g., precipitation and

radiation), determine the magnitude and spatial variability of the gain factors. In places

where important processes are absent from the model, such as melting of ice sheets and

glaciers, or human withdrawal of groundwater, the model-derived gain factors will likely

not be accurate. In such cases, a more comprehensive analysis is required to estimate and

restore the possible signal loss in the data.

Most of the model-simulated TWS changes occur on the sub-seasonal to seasonal time

scales. The derived gain factors therefore are optimized to recover these frequencies, and
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may not be suitable for inter-annual or long term signals. A preliminary comparison of

trends in GRACE data and trends in hydrological models indicates that it is not advised

at this point to produce a global map of long-period gain factors based on these models.

For these types of signals, it is recommended that a user carefully examines the model

used to estimate filter effects, and if possible augment the model [e.g., Rodell et al.,2009].

The presented method of gridded gain factors and corresponding errors demonstrates

that estimating gain factors on a grid-point basis is a viable alternative to the basin-scaling

approach that has been used previously. This conclusion is drawn by comparing some

prominent river basin averages, both large and small. Thus, providing gridded gain factor

and error maps along with gridded GRACE observations over land should enable users

to recover attenuated signals from gridded GRACE data, and quantify the appropriate

uncertainty that takes measurement and leakage errors into account. The differences

between the basin- and grid-point scaling approach generally yield total errors that agree

to within 20% over the regions presented here, but we cannot rule out that grid-point

gain factors yield worse results than the basin-scaling approach over some user-defined

regions. The map of the combined leakage and measurement uncertainty should guide

GRACE users in treating regional averages carefully where significant scaling is necessary

(Fig. 4), or where the combined error is large (Fig. 6). Mountainous areas in particular

are affected due to the short TWS de-correlation length-scales there. Alternative signal

restoring methods are possible and may be more or less suitable for a particular region

under investigation. For example, mass loss estimates of the Greenland and Antarctic ice

sheets from GRACE can be obtained in an iterative procedure [Chen et al., 2009], or by

designing optimized special averaging kernels [Swenson and Wahr , 2002].
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Figure 1. (top) Root-mean-square variability of filtered GRACE TWS observations

(CSR-RL04), and (bottom) corresponding estimates of the measurement error based on

Wahr et al. [2006]. Note that we have have removed longer than annual TWS signal

variations to avoid the inflation of the error from these long-period TWS variations. Units:

mm-H2O.

Figure 2. Root-mean-square variability of observed (GRACE CSR-RL04; left column)

and simulated (GLDAS-NOAH; right column) terrestrial water storage: (top row) unfil-

tered GRACE TWS and GLDAS-NOAH TWS at 1 × 1 degree resolution; (bottom row)

spectrally truncated at degree and order 60, de-striped after Swenson and Wahr [2006],

and smoothed with a Gaussian of 300 km width. Note the different color range for the

unfiltered GRACE data. Units: mm-H2O.

Figure 3. Basin-mean water storage for the Columbia River basin: (a) original

and filtered GLDAS-NOAH; (b) original vs the scaled basin-mean TWS (basin-scaled

and pixel-scaled version) GLDAS-NOAH; (c) original GLDAS-NOAH TWS compared to

scaled GRACE-TWS (CSR-RL04). Units: mm-H2O.
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Figure 4. Gain factors for GLDAS-NOAH monthly TWS variations derived by least-

square fitting each filtered grid-point (at 1× 1 degree resolution) time series to the unfil-

tered time series (see Eq. 1).

Figure 5. Correlation between filtered and unfiltered time series for monthly TWS

variations from GLDAS-NOAH.

Figure 6. GRACE TWS error maps. (top) GRACE-measurement errors are based

on the method of Wahr et al. [2006], and are scaled with the grid-point gain factors

from Fig. 4; (middle) the residual leakage error estimate, scaled by the ratio of the

RMS variability of GRACE and GLDAS-NOAH; (bottom) total errors from combining

leakage and measurement errors in quadrature. Note that although the errors are spatially

correlated, averaging over a region will reduce the grid-point errors, e.g., for the Amazon

basin the total error is about 11.3 mm-H2O (Tab. 1). Units: [mm-H2O].

.

Figure 7. Histogram of RMS differences between unfiltered GLDAS monthly mean

TWS and the filtered GLDAS amplitudes (blue line), and the filtered GLDAS amplitudes

scaled with a gain factor based on all monthly anomalies (black line), and scaled with a

gain factor based on a mean seasonal signal only (red line).
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Figure 8. (a) NW-India Indus Aquifer averaging region (inside polygon) and averaging

kernel after spectral truncation of the exact mask at degree l=60; (b) Mean TWS over

the Aquifer based on GLDAS-NOAH plus an added trend (-4 cm/yr) for the unfiltered,

filtered, and reconstructed data using only one gain factor as in Eq. 1; (c) as (b), but

decomposing the signal into seasonal and long-period components and deriving separate

gain factors for each using Eq. 5. See Rodell et al. [2009] for a more detailed discussion

of TWS in this region.
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Table 1. Gain factors, leakage, measurement, and combined errors for unfiltered and

filtered TWS variations for various drainage basins (ordered by decreasing size). The gain

factors kb are unitless, all errors are in units of mm of equivalent water height.
Basin kb Error (Leakage) Error (Measurement) Error (Combined) RMS ratio

( El
b
)a (El

b,kb
)b (El

g)c ( Em
b

)d (Em
g )e ( Et

b
)f (Et

g)g ( GRACE/GLDAS)

Amazon 1.02 7.6 7.1 7.0 9.2 8.8 11.5 11.2 1.8

Zaire 1.14 7.8 4.9 5.5 12.2 11.3 11.8 12.6 1.1

Mississippi 1.00 4.7 4.7 5.1 9.6 6.4 10.7 8.2 1.2

Ob 1.00 2.0 2.0 3.6 9.3 6.1 9.5 7.1 1.1

Parana 1.18 12.3 7.7 6.3 12.6 12.3 13.1 13.8 1.1

Yenisei 1.03 3.8 3.5 5.0 9.6 6.8 9.9 8.4 1.2

Lena 1.10 4.7 2.5 5.3 10.3 7.9 9.6 9.5 1.3

Niger 1.06 5.4 4.1 5.9 11.5 10.5 11.6 12.0 1.4

Tamanrasett 0.62 8.6 6.8 5.0 7.3 6.1 13.6 7.9 3.2

ChangJiang 1.03 7.6 7.5 11.8 10.9 11.8 12.9 16.6 2.1

Missouri 0.78 14.0 8.7 6.9 8.2 6.2 13.6 9.3 1.5

Amur 1.17 5.8 3.2 6.6 12.4 10.1 11.0 12.1 1.1

Mackenzie 0.97 4.6 4.3 7.4 9.8 7.5 11.0 10.5 1.1

Ganges 1.11 13.4 8.5 12.8 12.4 11.5 14.0 17.2 1.5

Volga 1.08 4.8 2.2 3.9 11.3 8.4 10.7 9.2 0.9

Zambezi 1.11 14.1 7.0 7.6 13.3 16.9 13.9 18.5 1.2

Indus 1.26 25.4 23.5 17.2 15.4 12.6 26.5 21.3 2.1

Orinoco 1.23 39.9 27.0 20.7 16.4 18.3 30.1 27.6 2.7

Murray 1.34 18.3 16.5 8.1 16.9 15.3 20.7 17.3 2.4

Yukon 1.23 20.8 12.5 16.4 13.3 11.5 16.6 20.1 1.5

Colorado(Arizona) 1.01 9.3 9.3 6.7 12.6 10.9 15.5 12.8 1.7

Danube 1.15 14.6 11.0 9.1 14.1 11.6 16.5 14.8 1.1

Mekong 1.51 55.9 19.8 18.1 18.9 23.1 23.5 29.4 1.9

Columbia 1.44 31.9 13.5 15.6 17.5 15.5 18.2 21.9 1.6

Okavango 1.10 8.6 6.9 6.9 15.1 18.5 15.4 19.7 0.9

Kolyma 1.15 9.9 7.1 8.5 13.6 12.0 13.8 14.7 1.2

Arkansas 0.99 19.4 19.4 15.3 12.7 12.1 23.3 19.4 1.3

Irrawaddy 1.21 83.5 79.2 39.2 18.4 21.8 80.6 44.8 1.9

Godavari 1.31 36.0 13.9 14.6 19.8 27.8 20.5 31.4 1.3

Huai 1.47 28.8 20.7 17.1 20.8 22.7 25.1 28.4 1.4

Fraser 1.56 53.7 26.3 30.6 20.0 21.1 29.2 37.2 1.6

Anadyr 1.67 39.1 25.0 18.7 21.9 23.8 28.2 30.2 1.6

Chubut 1.98 34.5 22.2 20.5 26.3 28.8 25.9 35.4 1.6

Rufiji 1.23 31.2 23.4 27.6 19.0 26.5 28.1 38.3 1.5

Taz 1.16 17.0 11.1 11.1 14.2 15.3 16.5 19.0 1.1

Sacramento-SanJoaquin 2.90 95.2 47.0 27.7 39.6 39.1 48.9 48.0 2.0

Pyasina 1.47 35.8 17.3 13.0 18.9 22.3 21.6 25.8 1.3

Essequibo 1.22 49.8 42.7 36.3 19.5 26.6 45.5 45.0 2.0

Koksoak 1.45 23.9 14.4 9.7 18.6 21.1 19.2 23.2 0.9

Loire 1.44 21.6 10.7 13.5 19.7 21.7 17.4 25.5 0.8

Narmada 1.29 36.1 16.4 16.5 19.2 25.0 22.1 29.9 1.2

Flinders 1.28 28.0 24.1 15.1 21.0 31.9 29.2 35.3 1.2

Cunene 1.37 27.4 20.0 13.9 22.7 34.7 26.0 37.4 0.8

Douro 2.14 46.8 17.0 17.5 30.3 35.7 22.2 39.7 1.0

Barito 2.46 94.4 36.9 33.5 44.0 70.8 41.0 78.4 2.4

Gambia 1.49 45.5 23.4 24.4 24.3 39.7 28.5 46.6 1.3

a Leakage error based on GLDAS
b basin-mean residual leakage (kb applied)
c grid-based GLDAS leakage error
a,b,c (adjusted for RMS-ratio GRACE/GLDAS)
d basin-mean GRACE measurement error [Wahr et al., 2006]
e grid-based GRACE measurement error
d,e (adjusted for basin (d) and gridded (e) gain factors)
f Total error from basin-means (b & d)
g Total error from basin-means (c & e)

D R A F T March 12, 2012, 10:39am D R A F T


















	2011WR011453article_source_pdf.pdf
	2011wr011453-p01
	2011wr011453-p02
	2011wr011453-p03
	2011wr011453-p04
	2011wr011453-p05
	2011wr011453-p06
	2011wr011453-p07
	2011wr011453-p08

